skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Browder, Thomas E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The study of $$ \overline{B}\to {D}^{\ast}\tau {\overline{\nu}}_{\tau } $$angular distribution can be used to obtain information about new physics (or beyond the Standard Model) couplings, which are motivated by various B anomalies. However, the inability to measure precisely the three-momentum of the lepton hinders such measurements, as the tau decay contains one or more undetected neutrinos. Here, we present a measurable angular distribution of $$ \overline{B}\to {D}^{\ast}\tau {\overline{\nu}}_{\tau } $$ by considering the additional decay $$ \tau \to \ell {\nu}_{\tau }{\overline{\nu}}_{\ell } $$, wℓ. The full process used is$$ \overline{B}\to {D}^{\ast}\left(\to D\pi \right)\tau \left(\to \ell {\nu}_{\tau }{\overline{\nu}}_{\ell}\right){\overline{\nu}}_{\tau } $$ B ¯ D τ ν τ ν ¯ ν ¯ τ , in which only theℓandD*are reconstructed. A fit to the experimental angular distribution of this process can be used to extract information on new physics parameters. To demonstrate the feasibility of this approach, we generate simulated data for this process and perform a sensitivity study to obtain the expected statistical errors on new physics parameters from experiments in the near future. We obtain a sensitivity of the order of 5% for the right-handed current and around 6% for the tensor current. In addition, we use the recent lattice QCD data onB→D*form factors and obtain correlations between form factors and new physics parameters. 
    more » « less
    Free, publicly-accessible full text available April 17, 2026
  2. Abstract Some of the most astonishing and prominent properties of Quantum Mechanics, such as entanglement and Bell nonlocality, have only been studied extensively in dedicated low-energy laboratory setups. The feasibility of these studies in the high-energy regime explored by particle colliders was only recently shown and has gathered the attention of the scientific community. For the range of particles and fundamental interactions involved, particle colliders provide a novel environment where quantum information theory can be probed, with energies exceeding by about 12 orders of magnitude those employed in dedicated laboratory setups. Furthermore, collider detectors have inherent advantages in performing certain quantum information measurements and allow for the reconstruction of the state of the system under consideration via quantum state tomography. Here, we elaborate on the potential, challenges, and goals of this innovative and rapidly evolving line of research and discuss its expected impact on both quantum information theory and high-energy physics. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026